Mucosal luminal manipulation of T cell geography switches on protective efficacy by otherwise ineffective parenteral genetic immunization.
نویسندگان
چکیده
Genetic immunization holds great promise for future vaccination against mucosal infectious diseases. However, parenteral genetic immunization is ineffective in control of mucosal intracellular infections, and the underlying mechanisms have remained unclear. By using a model of parenteral i.m. genetic immunization and pulmonary tuberculosis (TB), we have investigated the mechanisms that determine the failure and success of parenteral genetic immunization. We found that lack of protection from pulmonary Mycobacterium tuberculosis (M.tb) challenge by i.m. immunization with a recombinant adenovirus-vectored tuberculosis vaccine was linked to the absence of M.tb Ag-specific T cells within the airway lumen before M.tb challenge despite potent T cell activation in the systemic compartments. Furthermore, pulmonary mycobacterial challenge failed to recruit CD8 T cells into the airway lumen of i.m. immunized mice. Such defect in T cell recruitment, intra-airway CTL, and immune protection was restored by creating acute inflammation in the airway with inflammatory agonists such as virus. However, the Ag-specific T cells recruited as such were not retained in the airway lumen, resulting in a loss of protection. In comparison, airway exposure to low doses of soluble M.tb Ags not only recruited but retained Ag-specific CD8 T cells in the airway lumen over time that provided robust protection against M.tb challenge. Thus, our study reveals that mucosal protection by parenteral immunization is critically determined by T cell geography, i.e., whether Ag-specific T cells are within or outside of the mucosal lumen and presents a feasible solution to empower parenteral immunization strategies against mucosal infectious diseases.
منابع مشابه
Protective Immunity in Mice Following Immunization with the Cochleate-Based Subunit Influenza Vaccines
High morbidity and mortality of influenza virus infection makes it an important disease world-wide. Mouse is a very well-studied animal model for this disease with similar manifestation to human disease. It would be desirable to induce mucosal as well as circulating immune responses to obtain protection from infection and to decrease the spread of the virus. Cell mediated immunity (proliferativ...
متن کاملAdHu5Ag85A Respiratory Mucosal Boost Immunization Enhances Protection against Pulmonary Tuberculosis in BCG-Primed Non-Human Primates
Persisting high global tuberculosis (TB) morbidity and mortality and poor efficacy of BCG vaccine emphasizes an urgent need for developing effective novel boost vaccination strategies following parenteral BCG priming in humans. Most of the current lead TB vaccine candidates in the global pipeline were developed for parenteral route of immunization. Compelling evidence indicates respiratory muco...
متن کاملLocal immune response and protection in the guinea pig keratoconjunctivitis model following immunization with Shigella vaccines.
This study used the guinea pig keratoconjunctivitis model to examine the importance of route of administration (mucosal versus parenteral), frequency and timing of immunization (primary versus boosting immunization), and form of antigen given (live attenuated vaccine strain versus O-antigen-protein conjugate) on the production of protective immunity against Shigella infection. Since local immun...
متن کاملInfluence of mucosal and parenteral immunization with a replication-defective mutant of HSV-2 on immune responses and protection from genital challenge.
Herpes simplex virus (HSV) most frequently initiates infection at a mucosal surface; thus mucosal immune responses are likely to be important in defense against HSV infection. We have examined the effects of eliciting mucosal as well as systemic immune responses on protection against genital challenge infection with virulent HSV-2 in mice immunized with a replication-defective mutant of HSV-2. ...
متن کاملAge at Mycobacterium bovis BCG Priming Has Limited Impact on Anti-Tuberculosis Immunity Boosted by Respiratory Mucosal AdHu5Ag85A Immunization in a Murine Model
Tuberculosis (TB) remains a global pandemic despite the use of Bacillus Calmette-Guérin (BCG) vaccine, partly because BCG fails to effectively control adult pulmonary TB. The introduction of novel boost vaccines such as the human Adenovirus 5-vectored AdHu5Ag85A could improve and prolong the protective immunity of BCG immunization. Age at which BCG immunization is implemented varies greatly wor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 178 4 شماره
صفحات -
تاریخ انتشار 2007